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NASA TT F-10,8!+8 

COMBINED APPROXIMATION METHOD FOR ENERGY CALCULATION I N  
THF: MANY-EEXTRON PROBW- 

An approximation formula for  t h e  quantum-mechanical many- 
body problem is  developed f o r  t h e  energy calculat ion of 
many-electron configurations, based on u t i l i z a t i o n  of spectro- 
scopic data  f o r  quantitative chemical analyses. 
i s  a combination of the Thomas-Fermi s t a t i s t i c a l  d i s t r ibu t ion  
and the  Schrijdinger equation, applying the  former t o  the  atom 
rumpf and t h e  la t ter  t o  the  valence electrons.  
of the  method t o  the  binding energy of K, yie lds  only  37% of 
t h e  t r u e  energy and 39% fo r  KH, with the  main reason f o r  t he  
energy deficiency being neglect of t h e  o r b i t a l  motion coupling 
of electrons due t o  t h e i r  interaction. Mathematical develop- 
ment of t he  method i s  given f o r  t he  K, and t h e  KH molecule as 
typica l  examples. 

The method 

Application 

1. Introduction 

It i s  known tha t  quantum mechanics has been able t o  Itsolve i n  principle11 
However, despi te  numerous qual i ta t ive re- the  chemical fundamental problems 

su l t s ,  an unambiguous quantitative application of t he  theory, except f o r  a few 
M t i n g  cases, t o  p rac t i ca l  chemical problems has never been possible, and the 
chemist is  usually forced t o  continue using t h e  old models f o r  obtaining a more 
o r  less quantitative systematics of  the great  mul t ip l ic i ty  of experimental data. 
It i s  by no means a function of theory t o  recalculate  a l l  empirical da ta  indi- 
vidually. Nevertheless, one can expect t h a t  the  theory should furnish a simple, 
although rough, theore t ica l  scheme which would interconnect the various proper- 
t i e s  of atoms without excessive ambiguity and permit reducing p rac t i ca l  problems 
of the  chemical behavior of atoms t o  measurable atomic properties of as uni- 
versal as possible a character. 
this direction. 

The present paper i s  t o  make some progress i n  

Since, i n  the f i n a l  analysis, a l l  propert ies  of a given atom are quantita- 
t i ve ly  ref lected i n  i t s  spectrum, i t  is  log ica l  t o  attempt using t h e  extensive 
spectroscopic material on atoms, f o r  deriving and quantitatively formulating 
the  chemical properties.  We will make an attempt here t o  develop an a p p r o h a -  

* A preliminary report  on the  results of this invest igat ion was published previ- 
ously (Ref  .1). 

Karpov I n s t i t u t e  f o r  P lqs ica l  Chemistry, Moscow. 

-33t Numbers i n  the  margin indicate  pagination i n  the  foreign tex t .  
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formula fo r  t he  quantum-mechanical many-body problem* which i s  t o  permit, 
simple manner, the  use of spectroscopic data  f o r  obtaining quantitative 

chemical data. 

The process consists i n  a combination of two methods f o r  determining the  
energy and density d is t r ibu t ion  i n  the atom, namely the Thomas-Fermi3"' s tatist i-  
c a l  d i s t r ibu t ion  and the  Schr'ddinger equation. 
be t rea ted  according t o  the  Thomas-Fermi method and t h e  valence electrons accord- 
ing t o  the Schr'ddinger process. 
problem of the form 

The r q f  of the atom w i l l  / 9 l 4  

For both together, there  exists a var ia t iona l  

where-U resp. T denote the  poten t ia l  and the  k ine t ic  energy p e r  u n i t  volume, so  
tha t  H represents the t o t a l  energy. T h i s  energy must be made a min imum which 
can be done, when using the  Thomas-Fermi method, by select ing the  t o t a l  density 
d i s t r ibu t ion  p (Ref .3)  and, when using t h e  Schr'ddinger process, by select ing t h e  
eigenfunction 4 .  T h i s  leads, i n  t h e  one case, t o  the Thomas-Fed d i f f e r e n t i a l  
equation and, i n  the other case, t o  the Schr'ddinger equation. 

2. Remarks on hDl i ca t ion  of t h e  Th-F Theory t o  Few Electrons 

Before fur ther  developing t h e  var ia t ional  problem, it i s  necessary t o  s e t t l e  
a few questions with respect t o  the appl icabi l i ty  of the  s t a t i s t i c a l  method t o  
only a f e w  electrons. 
method, namely a large number of  electrons i n  a singled-out p a r t i a l  volume of 
such a s i z e  tha t  the po ten t i a l  i s  prac t ica l ly  constant therein,  does not actual- 
l y  ex i s t .  Nevertheless, down t o  a f e w  electrons, more o r  less useful r e su l t s  
are obtained; even f o r  t h e  case of a single electron, the r e su l t s  are s t i l l  not 
meaningless. Since it i s  of importance f o r  our  spec i f ic  purpose t o  understand 
the  sense and usefulness of the Thomas-Fermi arguments i n  the presence of a very 
small number of electrons, we w i l l  precede the  ac tua l  problem by a few general 
considerations. 

S t r i c t l y  speaking, t he  assumptions of t h i s  approximation 

F i r s t ,  l e t  us r e c a l l  t h a t  t h e  significance of density d is t r ibu t ion  p i n  the 
I n  the former Thomas-Fermi method d i f f e r s  from tha t  i n  the  SchrEdinger process. 

case, we conceive the  individual electrons - although only within t h e  uncertainty 
produced by t h e i r  f i n i t e  space requirement i n  the  phase space - as being local- 
ized and, so long as su f f i c i en t  par t ic les  are present, speak of a continuous 
density function i n  the conventional thermodynamic sense. T h i s  density d i s t r i -  
bution p loses  i t s  meaning if only a single p a r t i c l e  i s  present.  kt us compare 
t h e  statements of t he  two theories f o r  both cases: 1) in f in i t e ly  many electrons, 
2) one electron located i n  a poten t ia l  box with impermeable w a l l s .  It i s  known 
tha t ,  i n  the former l imit ing cases, the statements coincide f o r  the t o t a l  k ine t ic  
energy of t he  system, namely 

/915 

35 The pr inciple  of this approxhation method was reported previously (Ref .3). 

)* Below, abbreviated as Th-F. 
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where p i s  the  t o t a l  density of a l l  electrons and V the t o t a l  volume of the box. 
I n  t h e  case of one electron, the wave mechanics, provided tha t  t h e  box - f o r  
s implici ty  - is  assumed as rectangular with an edge length a, w i l l  furnish the 
following expression f o r  the t o t a l  energy i n  the  lowest state: 

The corresponding density d is t r ibu t ion  reads 

x c 
* l ,  ' e 8  sins . --x. ab * Y - 3  sins - y  ring -2. 

a a a (4 )  

Recalling the  derivation of T(p) by means of the Paul i  principle,  it should be 
expected t h a t  en t i re ly  meaningless results are obtained f o r  a s ingle  electron. 
Nevertheless, i f  the Th-F expression i s  formally applied t o  the  s ingle  electron, 
the k ine t i c  energy density will be 

T h i s  i s  not a l l  meaningless f o r  the  single electron. 
form corresponding t o  t h a t  of eq.(5), l e t  us introduce, in to  the wave-mechanical 
formula, a "mean density ge r  u n i t  volumell p '  = l/a3 and a "mean k ine t ic  energy 
pe r  u n i t  volumell T' = E/a Hence 

To bring eq.(3) i n t o  a 

/916 T h i s  makes it possible t o  compare the  two equations (5 )  and (6), showing 

primarily tha t  they have the  proportionali ty of T with p* resp. T' with 

- h2 p ' *  i n  common. From this it follows tha t  we must assign t o  T and p i n  the 
m 

Thomas-Fermi method, f o r  the  case of a s ingle  electron, t he  significance of a 
11meanlf energy resp . p a r t i c l e  density. 
eq.(6), by no means agree with t h e  wave-mechanical expressions $*$ and 

The quant i t ies  p 'and T', as indicated i n  

h2 $"A$. Only the  t o t a l  energy T' V i s  the  same as - - * J$"A$dT . 
8 3 m  81?m 

However, quantitatively the  value of T' and thus of E, i n  the  s t r i c t  
formula (6) ,  i s  about f ive  times as high as t h a t  obtained by the  Thomas-Fenni 
method. 
i n  systems consisting of more than one electron but  tha t  it w i l l  diminish with 
increasing number of electrons since, i n  the l i m i t i n g  case of i n f i n i t e l y  maw 

It can be assumed tha t  t h i s  error  of the s t a t i s t i c a l  method exists also 
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electrons,  both theories  coincide. 
t i v e l y  good results f o r  the t o t a l  energy i n  t h e  case of a small number of elec- 
t rons i s  due t o  t h e  f a c t  tha t  the error  of too low a k ine t i c  energy i s  pa r t ly  
compensated by an e r r o r  i n  the  potent ia l  energy which ac t s  i n  the  opposite 
sense and vanishes similarly with increasing number of electrons.  

That t h e  Thomas-Fermi method furnishes rela- 

It i s  generally known that ,  i n  the Th-F theory, the  po ten t i a l  energy i s  
expressed not only by the energy of the charge cloud i n  t h e  external  f i e l d  but 
a l so  by the  t o t a l  in te rac t ion  of this cloud with i t s e l f .  
mechanics, the  sum of interact ions of each electron with the  contribution t o  the  
t o t a l  charge d is t r ibu t ion  furnished by this electron i t se l f  must be deducted 
again. 
many electrons.  
an everywhere too large po ten t i a l  energy function U ( p )  and an everywhere too 
small function T ( p ) .  
less electrons are present. 
compensate each other  i s  responsible f o r  the  finding t h a t  t h e  Thomas-Fermi argu- 
ments are s t i l l  useful f o r  the energy calculation of systems of relatively f e w  
electrons.  

However, i n  wave 

T h i s  e r ro r  becomes negligible only i n  the l imit ing case of inf ini te ly  
Consequently, i n  t he  Thomas-Fermi method one calculates  with 

In both cases, t h e  percentual e r ro r  becomes greater  the 
Obviously, the  f a c t  t h a t  both e r rors  p a r t i a l l y  

/917 3 .  Substantiation of a Combined bproximation Method 

We can now start with our ac tua l  task, namely tha t  of resolving the  general 
var ia t iona l  problem (1) i n t o  two subproblems. The one portion, consisting of a 
r e l a t ive ly  large number of electrons, is  assumed t o  represent completely closed 
configurations i n  the  sense of s t a t i s t i c a l  theory, i.e., a closed atom rumpf or 
a sum of such rumpfs tha t  prac t ica l ly  do not in te rac t .  L e t  t h e  contribution of 
this port ion t o  the  t o t a l  density d is t r ibu t ion  be almost independent of whether 
t h e  remaining electrons, i.e., the  Itvalence electrons'! are present o r  not. For 
t h e  valence electrons, i n t o  which w e  include the  t o t a l  charges outside of the  
closed rupfs, i t  i s  assumed tha t  t h e i r  density contribution i n  the region of 
t h e  rumpfs i s  small i n  comparison with t h e  density po produced by the  rumpf 
electrons themselves. 

Let us assume tha t  the  rumpf problem itself i s  solved. Consequently, we 
have t o  do with the  density dis t r ibut ion po as w e l l  as with U(po) and T ( p o )  
which make the  in t eg ra l  H, = s[U(p) + T(p)]d~,  under t h e  awdliary condition 
[pdT = N, a m i n i m u m .  We now add t o  this system the  re la t ive ly  low charge Ap of 

he valence electrons" which are normed t o  JApdT = n and then seek the  energy 
and densi ty  d is t r ibu t ion  of the  en t i r e  system. 

The o r ig ina l  density d is t r ibu t ion  then changes i n  two d i f fe ren t  ways. On 
t h e  one hand by the  f ac t  t h a t  t he  density d i s t r ibu t ion  po of the  rumpfs, under 
maintenance of t he  norming, i s  modified somewhat (llpolarizationll of t h e  rumpf by 
t h e  valence electrons).  
val id  f o r  it. T h i s  modified density d is t r ibu t ion  of t he  rumpfs i s  superposed, 
however, by the  addi t ional  density A p  of  the  valence electrons with SApd'r = n. 

35 Actually, we only assume smallness of A p  i n  the  region i n  which po d i f f e r s  
from zero, i.e., i n  the  atom rumpfs. 

T h i s  component i s  denoted by 6po, and s 6 p o d ~  = 0 i s  



Expanding p i n  Taylor series and making use of the  smallness of the density 
var ia t ion  (Sp + A p ) ,  t he  energy of t h e  system with valence electrons w i l l  read /918 

Here, the  in t eg ra l  over U(po) + T ( p o )  i s  simply the  energy H, of the  rumpfs 

alone. The in t eg ra l  (- a u  + &)6pdT vanishes since po has been selected 
aP0 aP0 

such t h a t  this vanishing takes place for each allowed minor var ia t ion Sp, com- 
pa t ib l e  with the  boundary and auxiliary conditions. Accordingly, the  vanishing 
of t h e  integrand takes  place only f o r  the neutral  atom and then only i f  s t r i c t  
solutions of t he  Thomas-Femi d i f f e ren t i a l  equation f o r  po are used. For ions, 
the  integrand i s  a constant (#  0);  see a l so  (Ref.&). If the  Th-F solutions are 
modified by admitting only  ce r t a in  p 
c ien t ly  vanishing at  i n f i n i t y  (Ref .59, then the  integrand w i l l  no longer vanish 
f o r  the  neutral  atom whereas t h e  en t i re  i n t e g r a l  does vanish. 
t h a t  6p i s  suf f ic ien t ly  small f o r  permitting a r e s t r i c t i o n  t o  the  first term of 
the  Taylor expansion i s  based on general knowledge of t h e  s h e l l  s t ruc ture  of 
atoms. Details of the  s h e l l  s t ructure ,  such as the  existence of f u l l y  closed 
rumpfs, a r e  not reflected by t h e  Th-F theory. This empirical f ac t  can be intro-  
duced as an expansion and improvement of the  theory, by assuming tha t  a l so  terms 
with ( 6 ~ ) ~  are s t i l l  small i n  comparison with the  higher powers of Ap , which 
w i l l  be taken i n t o  consideration below. Terms with SpAp, finally, can be con- 

as competition, f o r  example those suf f i -  

The assumption 

r f a u  ceived as being added i n  first approximation t o  t h e  in t eg ra l  

Apd~, by assuming s l igh t ly  modified - and -. 
J (- apo + 

a u  a T  For the moment, however, 
aP0 aP0 

we w i l l  r e s t r i c t  t he  calculat ion t o  the first term of t he  se r i e s  A D .  

I n  solving the  minimum problem for  t he  e n t i r e  system, a t  given po and /919 
a f t e r  separation of t he  in t eg ra l  with po, t h e  minknun requirement f o r  t he  corn 
ponent of t he  t o t a l  energy contributed by the  valence electrons w i l l  be 

o r ,  with the  known re l a t ion  

where Vo denotes the  en t i r e  e lec t ros ta t ic  po ten t i a l  f i e l d  of the  rumpfs, 
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I .  

If, without 
we had added the 

consideration of t he  P a u l i  p r inc ip le  o r  of t he  Fermi s t a t i s t i c s ,  
valence electrons t o  the rumpfs f o r  the  e n t i r e  system, then 

only the  term with -eVo would have occurred &der the  in tegra l .  
we would have found tha t ,  under the influence of t he  high pos i t i ve  po ten t i a l  i n  
t h e  rumpf, the  valence electrons would have penetrated deeply i n t o  t h e  rumpf it- 
s e l f .  That these electrons would not have penetrated completely i n t o  the  
nucleus would have been due only - similar t o  t h e  case of t he  valence electron 
of t h e  H atom - by the  f a c t  t h a t  they themselves possess a f i n i t e  space require- 
ment i n  t h e  phase space, i.e., a zero-point energy, even i f  no fur ther  electrons 
are present .  
of each valence electron, does not even occur i n  ego(?) .  
higher order i n  A p ,  namely, proportional t o  ( A P ) ~ ~ ~ .  A term with ( A p ) &  would 
be of importance, i n  f i r s t  approdmation, nn& i f  eny.!?) -m~lii net c m t ~ r ,  t h e  

much higher k ine t ic  energy - . I n  t he  Th-F theory, - means the &mum 

whereas eq.(D) s t a t e s  t h a t  the added valence electrons must assume exactly this 
maximum k ine t ic  energy if they a r e  t o  s tay within the  already exis t ing density 

I n  t h a t  case, 

T h i s  k ine t ic  energy component, due t o  the  f i n i t e  momentum width 
The component i s  of a 

a T  
( ;io 1 aP0 

k ine t i c  energy f o r  one electron, occurring i n  the  studied poin t  of space, /920 

a T  d i s t r ibu t ion  pO.  The auxiliary tern - t o  the po ten t i a l  $thus i s  a d i r ec t  
aP0 

consequence of the  Pauli  pr inciple .  Our derivat ion of eq.(?b) shows tha t  t he  
forces,  due t o  the  Paul i  p r inc ip le  respectively t o  the zero-point pressure of 
t h e  r q f  electron cloud, can be approximately considered i n  the  form of an 
auxiliary poten t ia l  t o  the e l ec t ros t a t i c  po ten t i a l  f i e l d  i n  which the valence 
electrons a re  located. 

In  e q . ( n ) ,  we a l so  neglected the  following: 

1) The f i n i t e  
were singly-uni que 

momentum width of the valence electrons themselves since they 
imparted the  maximal momentum P 

2) The e l ec t ros t a t i c  mutual in te rac t ion  of the  valence electrons which a l so  
i s  of a higher order i n  Ap 

-:+ We proved above tha t ,  f o r  an order-of-magnitude estimate, eq.(2) for T can be 
used even f o r  a s ingle  e lectron provided t h a t  p denotes i t s  mean density i n  the 
ava i lab le  space. 
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' .  
3) The Pauli principle for  the valence electrons i n  interaction. A l l  these 

terms are  d i f f i c u l t  t o  approximate by s t a t i s t i c a l  means since the nondivisibil i ty 
of e i s  important fo r  this and since i n  the case of too few electrons, we no 
longer can speak of an electron density i n  the sense of the Thomas-Fermi theory. 
These three components of the energy w i l l  be formulated from the wave-mechanics 
viewpoint; however, it w i l l  be st ipulated tha t  the en t i re  in te rac t ion  of the  
valence electrons with the r q f s  can be appro-tely described by the  poten t ia l  

f i e l d  -eVo + -. a T  
aP0 

Even i f  we r e t a in  eq.(7b) as w e l l  as the semi-classical concept of the 
electron as being a pa r t i c l e  localized within the atom, eq.(7b) will already 
yield statements going beyond the statements of the Thomas-Fermi theory f o r  an 
atom with valence electrons. 

For example, l e t  us apply eq.(7b) t o  the valence electron of an a l k a l i  /921 
atom. 
known Thomas-Fermi solutions f o r  an ion 
(Ref .4), the  rumpf f i e l d  in to  which the 
valence electron penetrates has the 
following consistency: On the  outsid$, 
up to  a radius ro which i s  about 4.6 A 
f o r  monovalent ions (Ref . k ) ,  t he  Coulomb 

According t o  eq.(7b) and t o  the 

i 
Fig .1 f i e l d  prevails.  Star t ing from r = 

= ro, the en t i r e  f i e l d  Vo - - 1 a T  

remains constant and equal t o  the potent ia l  Vo = 

ion. Figure 1 shows the slope of the  potent ia l  function f o r  t he  valence elec- 
tron. Obviously, i n  eq.(7b) minimal energy is  obtained i f  t h e  charge of t he  
valence electron i s  brought t o  the  bottom of the  poten t ia l  box sketched i n  
Fig.1. It i s  also obvious - going beyond the approximation of eq.(7b) - t ha t  
the  momentum width of the valence electron Will be extremely narrow since the 
available space i s  extremely large, meaning t h a t  neglecting a term of the order 
of magnitude -(Ap)* i n  the energy i s  ent i re ly  jus t i f ied .  

a t  the  boundary of t h e  
YO 

Similarly, an elimina- 

t i o n  of - e2 J A&) ~ ~ ( 2 1  d-r2d-rl is not only j u s t i f i ed  but even necessary 
2 r12 

f o r  improving the  Thomas-Fermi formula, since the individual electron has no 
in te rac t ion  with i t s e l f .  Consequently, the ionization energy of the  valence 

electron, using our a p p r o h t i o n ,  will be obtained as V, = -. 
t o  3.1 v, which applies universally t o  a l l  a l k a l i  atoms. In the  case of cesium, 
where the  prerequisites f o r  application of the Th-F d i f f e ren t i a l  equation t o  the 
rumpf, i.e., of t he  poten t ia l  f i e l d  shown i n  Fig.1, a re  most l i ke ly  t o  exist, 
the real ionization energy i s  3.9 v, i.e., s t i l l  i n  f a i r  agreement. 

e2 
r0 

T h i s  comes 

We now will go beyond the Thomas-Fermi theory by adding the  or iginal ly  ne- 
glected terms of higher order, t ha t  do not expl ic i t ly  depend on the charge dis- 



t r i b u t i o n  of the  rumpfs, t o  eq.(7b) i n  the  Schr%inger form+': 

dT - -  
H - H n , =  J( -e.,+-) 8PO bf r+  

/922 

where J[ depends on the coordinates of a l l  valence electrons while U' i s  t h e i r  
in te rac t ion  as a function of the  configuration'". 
theses  under the  first in t eg ra l  i s  denoted by V', we can wr i te  

If the  expression i n  paren- 

where the  subscript  i means t h a t  t h e  t o t a l  po ten t i a l  function V' must be wr i t ten  
successively i n  the coordinates of each electron. T h i s  f i n a l l y  yields  a varia- 
t i o n a l  problem f o r  the valence electrons which d i f f e r s  from the conventional 
type only by the f a c t  t ha t ,  i n  addition t o  t h e  e l ec t ros t a t i c  f i e l d  of the  rumpf 

electrons,  a counteracting IIauxLliary f ie ld"  - occurs which no longer i s  of 

e l ec t ros t a t i c  o r ig in  but i s  defined by the  electron configuration i n  the  rumpf 
alone. 

a T  
aP0 

4. Discussion of t he  Modified Schsdinger Equation 

Our Schr'cjdinger equation fo r  t he  valence electrons thus has the  normal form 

Ar+U(l -2 . . . )  +=.E+, 1 ( 9 )  

a T  except f o r  the  f a c t  t h a t  U contains the auxi l ia ry  potent ia l :  U = -eVo + - + 
aP0 

+ U'. 
the  Paul i  pr inciple  of these electrons is sa t i s f i ed .  Conversely, no addi t ional  
s t i pu la t ion  with respect t o  the  quantum s t a t e s  of the  rmpf w i l l  occur: 
exclusion principle,  which otherwise forces the electrons i n t o  external orb i t s ,  
has been replaced here by a force tha t  pushes the  electrons toward the  outside. 
Whereas an exclusion pr inc ip le  - without  antisymmetrization of the t o t a l  function 
respectively wtthout inclusion of a l l  individual functions of t h e  rumpf electrons 
i n t o  t h e  perturbation problem - can be formulated only f o r  the quantum states of 

If J[ i s  made antisymmetric i n  t h e  coordinates of the  valence electrons,  /923 
The 

3:- This i s  no formally consequent continuation of the  above-started se r i e s  expan- 
s ion of the  Th-F problem. 

3%:- This a l so  corrects  the  in te rac t ion  o f  the  electrons with themselves which had 
been wrong i n  the Thomas-Fermi theory. 
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one valence electron r e l a t ive  t o  the  corresponding r q f  and then only i n  first 
approximation3t, t he  a b l i a r y  poten t ia l  of each rumpf w i l l  a f f ec t  a l l  valence 
electrons of the e n t i r e  system. A s  demonstrated on typ ica l  examples below, this 
f a c t  i s  extremely important and r e su l t s  i n  d i s t i n c t  improvements over treatments 
of the  binding problem that  do not at a l l  consider the  rumpf i t s e l f  o r  only take 
i t s  e l e c t r o s t a t i c  e f fec t  i n t o  consideration and that allow f o r  the Paul i  prin- 
c ip l e  i n  the form of an lloccupation rulelt. 

A loose analog t o  this - a t  first glance r a the r  surpr is ing - replacement 
of a quantum ru le  by introduction of some force is, f o r  example, the  f a c t  t ha t ,  
i n  the H atom, the k ine t ic  energy produced by the ro t a t iona l  motion, exactly 

l i k e  an auxi l ia ry  po ten t i a l  energy + - 
S#m 

equation f o r  the r-dependent component of the  eigenfunction. 
t i on  of t h e  angular momentum forcedly leads t o  an increase i n  k ine t i c  energy as 
soon as t h e  electron approaches the nucleus. 

' ( I  + , enters  the d i f f e r e n t i a l  rz 
Here, the  quantiza- 

For the  moment, the en t i r e  theory developed here must be considered a s  a 
t en ta t ive  method, possibly i n  the same sense as t h e  Thomas-Fed. method i t s e l f ,  
whose p r a c t i c a l  appl icabi l i ty  t o  atoms cannot be t h e o r e t i c a l k  f u l b  substanti- 
ated. 
However, since we a re  attempting a considerable improvement of the  accuracy ob- 
ta inable  by the  Th-F process, ou r  method can be evaluated only on the basis of 
the  obtained results. 
an important quantitative refinement i n  Section 5, based on spectroscopical 
empirical data. 
as t o  the  statements of our modified Schrzdinger equation f o r  valence electrons.  

Nevertheless, p rac t i ca l  success of the Th-F method has been recorded. /9& 

We w i l l  do this i n  Sections 6 and 7, a f t e r  introducing 

A t  t h i s  point, however, we can already give a few general data 

A ser ious d i f f i c u l t y  i n  t h e  p rac t i ca l  appl icat ion of t he  arguments t o  any 
atoms is  presented by t he  f a c t  t ha t  the basic  term of our modified. Schsdinger  
equation, because of the  spherical  symmetry of the poten t ia l ,  always will be an 
s term. Consequently, a l l  electrons of an atom outside of completely closed 
s h e l l s  must be considered "valence electrons!! i n  the  sense of our arguments. 
Despite t h e  f a c t  t h a t  an expansion i n  Ap i s  jus t i f i ed  i f  the  t o t a l  number of 
valence electrons i s  no longer small, so long as t h e  contribution of these 
valence electrons t o  the  density i n  the rumpf region remains low, a p rac t i ca l  
calculat ion of binding problems i s  still  inpossible i f  too many %alence elec- 
trons" a r e  present. However, it i s  not t h e  purpose of these rough s t a t i s t i c a l  
arguments f o r  t he  influence of t h e  r u q f  on the  valence electrons t o  give a l l  
f ine  d e t a i l s  of t h e  spectrum produced by the  influence of t he  incomplete s h e l l s  

35 The P a u l i  p r inc ip le  i s  exactly sa t i s f i ed  only i n  Fockfs treatment of the  many- 
e lec t ron  problem. By adding t h e  Fock exchange terms t o  the Hartree equations, 
the  orthogonality of t h e  system of eigenfunctions, which had been l o s t  i n  
Hartreefs  method, i s  restored i f  t h e  difference of t he  shielding f i e l d  f o r  the  
various electrons i s  taken i n t o  account. It must be considered t h a t  the Pau l i  
p r inc ip l e  requires more than ju s t  t he  exclusion of multiple occupation of ident i -  
c a l  eigenfunctions; i n  fac t ,  t h e  pr inciple  s t i pu la t e s  t he  occupation o f  "differ-  
ent" eigenfunctions which means, as also indicated by Fockfs theory (Ref .6) ,  of 
orthogonal eigenfunctions. 
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on t h e  op t i ca l  electron. 
method i s  tha t  of chemical problems, i n  which it i s  only a question of defining 
the  ruqf ef fec t  more accurately than can be done by the  exclusion pr inc ip le  
alone, under neglect of a l l  interactions with the  rumpf. 

The t r u e  f i e ld  of appl icat ion of this approximation 

I n  t h e  f irst  two groups of the periodic table, the  above arguments a re  
quite useful, i n  tha t  always only one o r  two electrons are t rea ted  as valence 
electrons"$ . 

Above, we considered the  cesium valence e lec t ron  i n  a semiclassical  /925 
manner, according t o  t h e  modified Thomas-Fed theory. 
i n  t h e  energy by using t h e  corresponding Schr'ddinger equation f o r  F'ig.1. With- 
out ac tua l  calculation, it can be predicted tha t ,  i n  v i e w  of t he  s i z e  of t h e  
po ten t i a l  box, the  basic term i n  this f i e l d  W i l l  be located only s l i gh t ly  above 
t h e  bottom of the  box. Considering that t h e  valence electron without auxiliary 
po ten t i a l  - and without appl icabi l i ty  of t he  exclusion pr inc ip le  - i n  the 
e l ec t ros t a t i c  f i e l d  of t he  rumpf would almost f a l l  i n t o  the  K s h e l l  and during 
this process take on an ionizat ion energy of many thousands of volts,  an agree- 
ment with the  measured ionizat ion energy t o  within about 1 v must be considered 
an  en t i r e ly  sa t i s fac tory  proof f o r  the  basic ju s t i f i ca t ion  of introducing our 
auxiliary potent ia l .  However, f o r  prac t ica l  purposes this accuracy is  insuff i -  
c ient ;  i n  Section 5, we W i l l  give f u r t h e r  refinements which are extremely small 

although, i n  comparison with the  t o t a l  e f fec t  of t h e  auxiliary poten t ia l  - 
i n  order of magnitude, they do a t t a i n  the binding energies calculated with such 
atom models. 

Very l i t t l e  i s  changed 

a T  
aP0 

kt us first discuss another possible objection. Should one not expect 
t h a t  our valence function, at  least i n  i t s  general  character, would coincide 
with the eigenfunction obtained from t h e  Hartree method under application of t h e  
exclusion principle? However, this will never be the  case, even i f  t he  slope 
of t h e  auxiliary potent ia l ,  used i n  the example of cesium, i s  refined fur ther .  
T h i s  i s  so since our function, as basic function i n  the  po ten t i a l  f i e ld ,  f o r  
example will never show the  nodes of t h e  Hartree function's". 

' 5  To obtain a simpler formalism f o r  more complex atoms, i n  which incomplete 
inner  s h e l l s  play a ro le  f o r  t h e i r  chemical behavior, it might be possible t o  
include, i n  the auxiliary potent ia l ,  terms t h a t  depend on t h e  square of t h e  
angular momentum (as operator), so as t o  allow f o r  the f a c t  t ha t  t h e  resis tance 
offered by a rumpf with incomplete shel ls  t o  t h e  penetration of a valence elec- 
t r o n  w i l l  depend not only on the  loca l  coordinates of t h i s  e lectron but a l so  on 
t h e  square of i t s  angular momentum (i.e., on t h e  momentum quantum number i n  the 
case of t h e  valence electron of t he  free atom). 
s h e l l s  can be included i n t o  t h e  r q f .  
r e t a i n  the exclusion pr inc ip le  i n  part .  
t i c u l a r  question. 

Conversely, such incomplete 
Occasional*, it may be permissible t o  
We hope t o  re turn la ter  t o  this par- 

~5 The well-known S la t e r  rule f o r  obtaining nodeless eigenfunctions f o r  t h e  
electrons of an atom can be interpreted i n  the  sense of the  combined appro&a- 
t i o n  method. Here, each electron, as eigenfunction and eigenvalue, 

10 
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A comparison of t he  expressions for  t h e  basic term of the valence electron, 
formed e i t h e r  with t h e  Hartree solution o r  with our own solut ion and t h e  per- 
ta in ing  Hamilton functions, indicates  c lear ly  t h a t  t he  two quant i t ies  $ cannot 
be equal since the two Hamilton functions d i f f e r  grea t ly  from each other w h i l e  
the  ion iza t ion  energies must be equal. According t o  Hartree-Fock, the exclusion 
pr inc ip le  which s t ipu la t e s  t h a t  a cer ta in  excited eigenfunction must be used 
f o r  J r ,  results i n  the  f a c t  t h a t  t he  in tegra l  contribution of t he  f i e l d  with high 
negative values of H remains negligible since $"$, even i n  this region, has 
small values everywhere. 
f a i n t l y  so i n  the v i c in i ty  of the  nucleus; f o r  this reason, our valence electron 
does not have too low an energy. A t  a greater  distance from t h e  atom rmpf ,  t h e  
slope of the  two eigenfunctions presumably w i l l  be similar since, i n  both cases, 
a p rac t i ca l ly  pure Coulomb f i e l d  i s  involved. 
excited states of t he  valence electron and t h e  per ta ining eigenfunctions will 
not d i f f e r  excessively i n  e i t h e r  case. 

/926 

I n  our case, H i s  e i t h e r  not negative a t  a l l  o r  only 

For the  same reason, the  higher 

For a l l  energy problems i n t o  which the  eigenfunction of t he  electrons enter ,  
this has no absolute significance independent of the  corresponding rumpf. 
using Hartree solutions,  so long as  one does not change t o  the  many-electron 
problem, the existence of s t a t e s  occupied by rmpf  electrons must always be 
allowed f o r  by auxi l ia ry  rules. 
excited electron with unoccupied ground s t a t e s  almost always leads t o  e r ro r s  
since, i n  any perturbation, a portion of the  t o t a l  charge W i l l  enter  this un- 
occupied space of high negative poten t ia l  and thus grea t ly  reduce the  energy. 
I n  reality, the  rumpf electrons block the access of fu r the r  charge components. 
I n  our case, this i s  expressed i n  the awdl i a ry  po ten t i a l  which, i n  contrast  t o  
t he  exclusion pr inciple ,  a f f ec t s  each charge component no matter where i t  or igi-  
nates. Conversely, the exclusion pr inciple  does not prevent, f o r  example, the  
charge cloud belonging t o  a second atom from p a r t l y  penetrating i n t o  the  rmpf 
of the  f i rs t  atom. Similar e r rors  a re  comi t t ed  i f  the polar iza t ion  energy of 
a valence electron i n  the external  f i e l d  i s  calculated i n  the  same manner as 
t h a t  of an excited atom with unoccupied inner  she l l s .  Despite the exclusion 
pr inc ip le  f o r  the valence electron i t s e l f ,  we de f in i t e ly  obtain excessive polar i -  
zation energies since the  formal perturbation calculat ion always leads t o  a 
strong par t ic ipa t ion  of t he  - i n  r ea l i t y  forbidden - rumpf s t a t e s  of high nega- 

In  

The treatment of a valence electron a s  a t r u l y  

t i v e  po ten t i a l  energy i n  the  perturbed eigenfunction rn 
It is  obvious tha t  the  eigenfunction of the  valence electron, according t o  

Hartree, has no significance independent of t h e  quantum s t a t e s  of the rumpf, 
i.e., t ha t ,  according t o  Hartree, no closed one-electron problem i s  involved 
here. 

I n  a comparison of the  t o t a l  charge d i s t r ibu t ion  of t he  atom, obtained by 
calculat ing the  contribution of valence electrons according t o  Hartree and by 

27 
x- (cont td)  

h2 

i s  given t h e  fundamental solution i n  the  f i e l d  - + 

$( n% - '1 where z and n-  are detemfLned by the  e l ec t ros t a t i c  e f f ec t  

of t h e  deeper lying charges, by the  Pauli  pr inciple ,  and by the  quantum statis- 
t i c s  f o r  t he  angular momentum. 

+ 
8#m r.? 
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using our approximation solutions f o r  the  valence electrons,  it must be con- 
sidered tha t ,  i n  both cases, one s t a r t s  from the var ia t iona l  problem, meaning 
t h a t  the  density d is t r ibu t ion  may show d i s t i n c t  deviations from the real dis- 
t r ibu t ion  no matter how' accurate ' t h e  calculated energies might be. 

A s  c r i t e r i a  f o r  the  usefulness of one o r  the  o ther  descr ipt ion of valence 
electrons,  the only poss ib i l i t y  i s  t o  calculate p r a c t i c a l  examples. 
(Ref .7) demonstrated recently tha t  a l l  investigations,  i n  which sa t i s f ac to ry  
results f o r  the  binding energy of two atoms were obtained exclusively from the 
eigenfunctions of the  valence electrons, are based on ad hoc assumptions and 
give an en t i r e ly  erroneous p ic ture  of the real conditions. 
on neglecting the  repulsion of a l l  s t ray  valence electrons w i t h  t he  rumpfs, the  
energy decreases excessively which makes i t  appear - f o r  example - as  though 
p rac t i ca l ly  no polar izat ion forces par t ic ipated i n  t h e  binding ( f o r  an extensive 
Literature, see James loc.  c i t . )  . In part ,  exactly a s  expected, the  binding 
energy - already i n  first approfimation, i.e., without polar izat ion forces  - 
wi l l  be considerably higher than t h e  experimental value (Ref .8). 
t o  these problems i n  Section 6, when comparing our results with those cor rec t ly  
calculated by James (Ref .?) on the basis  of the  many-electron problem. 

James 

T h i s  i s  so since, 

We will r e t u r n  

5. Semienrpirical Method 

The above-mentioned example of the atom with one valence electron shows t h a t  
correct ion of  t h e  Schgdinger equation according t o  the  Thomas-Fermi method, /928 
i n  comparison with t h e  corrected e f fec t  which approfimately corresponds t o  the  
ion iza t ion  energy of an electron i n  the K she l l ,  i s  quite sa t i s fac tory  but not 
su f f i c i en t  f o r  calculating terms of the valence electron o r  binding energies of 
two atoms. However, a f t e r  demonstrating the  basic ju s t i f i ca t ion  of the  ami=- 
ary poten t ia l ,  there  i s  no objection t o  using an empirical modified value f o r  

-eve + a p o - 9  a T  so far a s  feasible .  

po lar iza t ion  forces between valence electrons and rmpf a re  p a r t l y  included. 
As an extensive and accurate empirical data  complex, we have the  spectra of the 
atoms at  our disposit ion.  The task  consists i n  finding, from the  known terns ,  
a po ten t i a l  f i e l d  and an eigenfunction system i n  which the ground s t a t e  of t h e  
valence electron appears as the  absolutely lowest s t a t e .  

I n  tha t  case, higher-order terms such as 

Along general l ines ,  the form of our  po ten t i a l  can already be predicted. 
A t  great  distances from the r q f ,  we have - except f o r  small polar izat ion cor- 
rect ions which Will be disregarded here - a pure Coulomb f i e l d .  The terms -eVo 

and - produced by t he  rumpf both will decrease toward the  outside, approxi- 

mately as the  density of the  rumpf electrons, i.e., about exponentially and by 
one order of magnitude more rapidly than the  density of t he  valence electrons 
themselves. A t  the  i n t e r i o r  of the rumpf, we Will at first disregard any f i n e r  
s t ruc tu re  of the  t o t a l  potent ia l .  
way t o  approximation arguments which, i n  the spectroscopic sense, a r e  extremely 
rough. 
spectrum of an atom w i t h  even halfway spectroscopic accuracy; i n  the subsequent 

a T  
apo 

T h i s  can be done since we a r e  r e s t r i c t e d  any- 

It must be made c l ea r  t h a t  we cannot have t h e  goal of reproducing the  
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appl icat ion t o  chemical binding problems, the requirements as t o  accuracy a re  
much more modest. 

Consequently, we w i l l  construct the t o t a l  po ten t i a l  from the  Coulomb func- 
t i o n  and from an exponentially rapidly descending function. 

type A 1 e-2nr, among a l l  calculated examples, seemed most sui table .  Here, 

1/n had about t he  value of half the o rb i t a l  radius of the  valence electrons and 
A was l a rge r  than 1, so t h a t  the  occurrence of a second po ten t i a l  w e l l  at r = 

For the  l a t t e r ,  the  

r 

/929 
A-2 X r 

= o i n - e v ,  + a T = - L +  was prevented. An argument A/$ e-2Xr r r aP0 
would avoid this i n  any case; f o r  purely external  reasons, namely because of 
t he  f a c t  tha t  the exchange in t eg ra l s  l a t e r  occurring i n  t h e  binding problem a re  
somewhat more convenient, we retained the f i r s t  argument. 

It would be easy t o  determine the  constants i n  the po ten t i a l  formula and 
t h e  eigenfunctions from the spectra, i f  there would e x i s t  s t r i c t  solut ions of 
the  Schgdinger equation f o r  this potent ia l .  
Therefore, we a re  forced t o  use the Ritz method for obtaining approximation 
solut ions.  A t  known A and n ,  the  m i n i m u m  requirements would determine a l l  para- 
meters of the eigenfunctions. To define A and x ,  the  known term value of the  
basic  term and t h a t  of the  lowest p-term a r e  used. 
auxi l ia ry  po ten t i a l  f i n a l l y  causes the  spectrum t o  become hydrogen-like f o r  the 
more excited terms. 

However, this i s  not t he  case. 

The rapid drop of our 

On introducing this po ten t i a l  and these eigenfunctions i n t o  some perturba- 
t i o n  problem, the R i t z  method can be used without r e s t r i c t ion .  However, since 
we adjusted A and n such t h a t  the  bas ic  term of t h e  f r e e  atom i s  obtained cor- 
r e c t l y  with only approximate eigenfunctions, the airrdliary po ten t i a l  no doubt 
will be somewhat too low. T h i s  does not matter since the  !!slightly incorrect!! 
eigenfunctions w i l l  be retained i n  each of the  subsequent perturbation calcula- 
t i ons  

On application of the  Rritz method, one can introduce an a rb i t r a ry  number of 
parameters i n to  the  ac tua l  perturbation calculation; because of the requirement 
t h a t  A and H must be so selected tha t ,  a t  vanishing per turbat ion energy, the 
lowest atom terms are  correct,  one has the  assurance tha t ,  f o r  each approxima- 
t i o n  degree of the  eigenfunction, the energy of t he  f r e e  atom - for example, 
due t o  the  var ia t iona l  parameters of the perturbation problem - W i l l  not drop 
below the t rue  basic term. 

Finally, we should mention again tha t  the  mutual i n t e rac t ion  of the rumpfs 
i s  not contained i n  the previous formulation of the  theory. 
only t h a t  this in te rac t ion  presumably will be of the next higher order r e l a t ive  
t o  t h e  in t e rac t ion  of t h e  valence electrons with t h e  rmmpfs of the other  atom. 

of the  r q f s  should be known. 
use the  po ten t i a l  energy of the density of t h e  one atom i n  the t o t a l  f i e l d  

It can be s ta ted  

To take this approximately i n t o  consideration, the  density d i s t r ibu t ion  po m 
However, as interact ion,  i t  i s  not permitted t o  

-eVo + - a T  of the other  atom. Since this f i e l d  does not have an e l ec t ros t a t i c  
3 P O  



I .  

origin,  t h e  formula energy = llpotentiallt x charge i s  applicable only f o r  charges 
that are small i n  coqa r i son  with the  charge po.  However, this i s  no longer the  
case when the  two rumpfs overlap; rather, there  now exist regions i n  which the  
charge of t h e  one atom i s  high and regions i n  which tha t  of t h e  other atom i s  
high as w e l l  as regions i n  which both are equally large.  For calculating the  
in te rac t ion  of t h e  two ruqfs as  a consequence of t h e  Pauli  p r inc ip le  we must 
re turn  here t o  the  consequent expression (Ref.5) 

3T 
aP a 

which i s  transformed i n t o  - pbdT only if everywhere P b  < p a .  T h i s  would 

be supplemented by t h e  regular e lec t ros ta t ic  in te rac t ion  of t h e  rumpfs. 
t h e  moment, this port ion of the  t o t a l  interact ion of the  two atoms W i l l  be com- 
p l e t e ly  disregarded * 

For 

The approximation arguments described i n  this Section can be extended 
fur ther .  
ing results f o r  simple binding problems. 
K atom and i t s  coqounds K, and KH. 

However, they are completely suf f ic ien t  f o r  obtaining valuable orient- 
A s  a typ ica l  example, we selected the  

6. The K, Molecule 

Let us check the  usefulness of our arguments on the  example of t he  K, mole- 
cule. 
t h e  valence electron, only t h e  type rJI = rB e-Er i s  actual ly  i n  question. 

The poten t ia l  formula had been discussed above. A s  eigenfunction f o r  

T h i s  furnishes, i n  atomic units, the mean k ine t ic  energy i n  a state with 
t h e  angular momentum 1: 

The mean po ten t i a l  energy i s  m 

where 8 aGd e-represent var ia t ional  parameters whose select ion (at given A and 
K )  makes H = T + U a minimum. 
on ly  i n t e g r a l  values f o r  B .  
lection, meaning t h a t  we are using hydrogen-like functions f o r  t h e  valence elec- 
t r o n  of K. 

For p rac t i ca l  reasons, however, we w i l l  admit 
In  the  case i n  question, 8 = 1 i s  t h e  suitable se- 

- 
The ground state then furnishes two equations = E and a = 0 f o r  t he  as 

three  unknowns c, A, H . 
used our orienting calculations H = 2 e o  (here co makes 2 a minimum), for  

Instead of using the  first excited state with 1 = 1, we 
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simplicity.  The estimate i s  reasonable since, as shown above, e-2nP must 

decrease by one order of magnitude more rapidly than p = --+- c 3  e-2Er . Thus, 

already the  known term value E = -0.1596 of t h e  ground s t a t e  yields  c = 0.29; 
n = 0.58; A = 2.743. For the lowes tp  term and using our n value, the  energy 
w i l l  be by 5% too low; f o r  this reason, 1.1 and A should r ea l ly  be selected somewhat 
smaller. However, f o r  a f i r s t  or ientat ion we w i l l  r e t a i n  the o r ig ina l  estimate. 

I n  the  K2 problem, the perturbation energy i n  the  s ing le t  s t a t e  w i l l  read 

Here, $, and 

ing  t o  t h e  two atoms. The component W, represents t h e  in te rac t ion  t h a t  would 
take p h c e  on neglecting the  auxi l iary po ten t i a l  and the  f a c t  t ha t  $,, $b are 
no eigenfunctions of the  urrperturbed Hamiltonian function. 
i n  parentheses i s  the Coulomb interact ion and the  exchange of the two valence 
electrons under the  influence of t he  aLudliary f i e l d .  The second expression i n  
parentheses i s  due t o  the  fac t  t h a t  our i n i t i a l  function represents o n b  an ap- 
proximation but no t rue  eigenfunction of t he  unperturbed atoms. 
t h e  known function calculated by Sugiura f o r  H,; we merely have t o  multiply his 
energy values by e and divide his distances by c .  The other i n t eg ra l s  a r e  easy 
t o  evaluate, f o r  which the  reader i s  referred t o  the  Appendix. 

Calc+tion of W a s  a function of the  nuclear distance R y ie lds  a minimum 
a t  R = 4.0 A of -0.19 v. 
Whereas t h e  distance i s  more o r  l e s s  correct, t he  energy i n  this approximation 
of t he  per turbat ion calculat ion i s  by far too low. 
the auxiliary poten t ia l ;  Wo alone, at  the same distance,  i s  W, = -0.71 v which 
means that it i s  even greater  than the  experimental value of the  energy. 

denote the  eigenfunctions & e-Er a and & e-Er b , belong- 

The first expression 

Here, W, i s  

The experimental values a re  R = 3.9 a and W = -0.51 V. 

The reason m a i n l y  l i e s  i n  

0 

The equilibrium distance f o r  Wo alone would be 3.0 A at an energy of -0.91 V. 
Using W, exclusively, approximately corresponds t o  elimination of a l l  rumpf ef- 
f e c t s  i n  the conventional perturbation calculus. 
then become much too log-.  
t he  obtained energy i s  much too low agrees excel lent ly  with the results obtained 

A s  expected, the  energy w i l l  
The finding t h a t ,  i n  considering the rumpf e f fec t ,  

3s See t h e  discussion of e a r l i e r  papers, i n  which an analogous calculat ion method 
was  used by James (loc.  c i t . ) ;  see especial* (Ref.7). 
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byM.James f o r  E2 i n  his consequent consideration of the  e n t i r e  rumpf e f fec t  
within the  scope of a Heitler-iondon perturbation method. I n  this approxima- 
t ion,  James obtained only 2& - 29% of the t rue  energy. 
the  corresponding percentage i s  67%. 
this w i l l  decrease fur ther  f o r  K,; i n  fact ,  i t  would not be surpr is ing i f  the 
Heitle-London calculus were t o  f u r n i s h  pos i t ive  energy values f o r  K2. 

favorable i s  due i n  p a r t  t o  our neglecting the mutual i n t e rac t ion  of t he  rumpfs 
or, i n  pa r t ,  t o  a somewhat too favorable auxi l iary function and t o  the  f a c t  t h a t  
po lar iza t ion  forces between electrons and rumpf were included. We share James' 
opinion that the  energy deficiency, i n  higher approximations especial ly  on in- 
troducing the  in te re lec t ron  distance, w i l l  appear as the  coordinate of a varia- 
t i o n a l  problem. Such an argument means t h a t  t he  electrons cannot be permitted 
t o  Vevolve11 independently of one another. It i s  exactly at  low energies of t he  
electrons t h a t  t h e i r  mutual repulsion will keep them apart  at a l l  times and thus 
lead t o  a considerable diminution of t h e  mean energy. 
e f f ec t  i s  about 1.5 v (Ref.9). It is t rue  t h a t  i n  the  case of Kz, t he  two elec- 
t rons  are not compressed in to  a small space but t h e i r  zero-point energy i s  less. 
It is  en t i r e ly  plausible  t o  assume an ef fec t  of -0.3 v, due t o  mutual polariza- 
t ion.  
calculat ion according t o  Ftitzc method which should be carr ied out i n  approxi- 
mately t h e  manner used by James and Coolidge (Ref  .lo) f o r  the case of H z 0  T h a t  
t he  par t ic ipa t ion  of ion ic  s t a t e s  and variations of 6 produce only a negligible 
improvement i n  the  energy can be e s t k t e d  a l so  i n  our case. 

For the  case of H,, 
Accordingly, i t  could be expected t h a t  

The f a c t  
t ha t  our resu l t ,  compared t o  the  resu l t s  by James, i s  s t i l l  r e l a t ive ly  L922 

I n  the  case of H,, this 

The ju s t i f i ca t ion  of this assumption must be demonstrated by an exact 

An especially surprising effect  discovered by James was  the decrease of the 
However, this ef fec t  i s  ob- t r i p l e t  term under the influence of t h e  atom rurmpf. 

tained automatically i n  our method since any reduction i n  the amount of t he  ex- 
change in t eg ra l  means a r i s e  of the s inglet  and a drop of the  t r i p l e t  term. 
Since the  contribution of t h e  auxiliary poten t ia l  t o  the exchange exceeds the 
corresponding diagonal term, the t r i p l e t  term i n  cpr method i s  lower with an 
auxi l ia ry  f i e l d  than without such a f ie ld .  A t  4 A, we obtain a value of only 
+0.4 v with an auxi l iary po ten t i a l  instead of a value of +0.9 v without such a 
poten t ia l .  James reported t h a t  the closed she l l s  influence the  exchange inte-  
g ra l s  of t he  valence electrons only by the f ac t  t h a t  permutations of the elec- 
t rons  higher than simple transposit ions a re  considered here; otherwise, the 
rumpfs would enter  only addi t ively along w i t h  the Coulomb interact ion.  
t h a t  these higher exchange e f f ec t s  a re  covered by our Thomas-Fermi theory con- 
s t i t u t e s  a strong substant ia t ion f o r  our attempted arguments. 

The f a c t  

7. The KH Molecule 

A s  a second example, l e t  us consider the  KH molecule. Here, it i s  necessary 
t o  have homopolar and ionic  s t a t e s  par t ic ipa te  i n  the  binding. 
t h a t  the  ionic  molecule seems more plausible per  se, atomic s t a t e s  may play a 
ce r t a in  r o l e  i n  the binding. For E H ,  Hutchisson and Muskat (Ref .11) found a 
correct  energy even under the assumption of pure atomic binding. However, f o r  
the  calculat ion method used, the cr i t ic ism voiced by us and a l so  by James ( loc.  
c i t . )  holds. Nevertheless, f o r  the time being, both binding types W i l l  be al-  
lowed t o  par t ic ipa te  i n  the  KH molecule. 

Despite t he  f a c t  
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The homopolar state has the  eigenfunction $, (1)$b (2)  + $ b  (I)$,( 2), where 

it i s  assumed tha t  $, = $b = e-'b . The subscript  b thus 

characterizes the H atom. The ionic  term i s  somewhat more d i f f i c u l t .  The 
formula $b (l)$b (2) f o r  this term would const i tute  too  poor an approximation. 
Similarly, even the  formula $, (l)$, (2)  with a shielded H eigenfunction $, would 
s t i l l  be poor. 
an electron a f f in i ty  of -0.74 v instead of t he  real  +0.712 V. 
ing the  r12 coordinate, the r e su l t  can be improved fur ther  i f ,  f o r  both elec- 
t rons of H', different  eigenfunctions are used and i f  symmetrization i s  per- 
formed, i.e., if $,(1) td(2)  + JId(1)qc(2) i s  used f o r  t h e  ionic  s t a t e ,  where $, 
and $d are H eigenfunctions with differing degree of shielding. 
cessive complication of our estimate calculation, we assume the function 

c e - E r b  f o r  JI , ,  i.e., the same function as f o r  Li except t h a t  we calculate  

here from the nucleus b and use the hydrogen function f o r  $ a ,  i.e., $d = $b . 
T h i s  y ie lds  the  increase i n  t o t a l  atomic radius of H- compared t o  H; t he  e lectron 
a f f i n i t y  of t he  free H-, using these functions, becomes +0.34 v and thus has 
considerably approached the  real value +0.712 V. 

It i s  known (Ref.9) that  this formula, fo r  the f ree  H, furnishes 
Without introduc- 

To prevent ex- 

Tr 

Consequently, our t o t a l  eigenfunction becomes 

where t h e  coeff ic ient  CT must be conceived as a var ia t iona l  parameter and must be 
so determined tha t  t h e  t o t a l  energy becomes a minimurn. 

La2z This i s  obtained as 

where P, Q, R denote the  following integrals :  

The small values p, q, r are obtained from the  large values P, Q, R by se t t i ng  

H = 1. Ekcept f o r  the in t eg ra l  I = - $a (l)$b ( l > $ a  (2)$b (21dT1d72 which i s  

contained i n  P, t he  in tegra ls  occurring here are entirely elementary and can be 
reduced t o  the  simple type given i n  the Appendix. 
reader i s  again referred t o  t h e  Appendix. 

ri a 

For the  estimate of I, the  
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A s  a result, we obtain an equilibrium distance of 2.1 with an energy of 

-0.8 V. Here, t he  par t ic ipa t ion  of the ionic  s t a t e  O" i s  80%. T h i s  i n  
1 + CY2 

i t se l f  would already give -0.7 v and the homopolar state alone would y i e lde  
-0.3 V. 
dissociat ion energy: 2.06 V. 

The experimental data are as follows: equilibrium distance = 2.2 A; 

A s  i n  the  case of K2, we again obtained only a f r ac t ion  of the  experimental 
energy. The reason i s  the  same as before, since t h e  coupling of t h e  electron 
motion ( f o r  example, measured by a term with r12 i n  the  t o t a l  eigenfunction) had 
been disregarded both i n  the ion ic  s t a t e  and i n  the homopolar state. However, 
we must add here t h a t  our calculation employed rather  arbitrary eigenfunctions 
of the  ion ic  state; i n  this case, the  introduction and var ia t ion of shielding 
parameters presumably would have l ed  t o  considerable improvement. Despite the  
unfavorable value of t he  t o t a l  energy, we are inclined t o  consider as real  the  
observed strong par t ic ipa t ion  of t h e  ionic state i n  t h e  binding. 

The attempt a t  interpret ing t h e  KH molecule as a purely ion ic  molecule a l so  
y ie lds  a ver i f ica t ion  f o r  our statements t ha t  t he  main reason f o r  t he  energy 
deficiency i s  coupling of the  electron motions. T h i s  i s  substantiated by the  
f a c t  tha t ,  f o r  t he  pure ionic  s ta te ,  we can take the  t o t a l  in te rac t ion  of t h e  
two electrons from data furnished by other authors, f o r  example by Bethe (Ref.9) 
who calculated this interaction, i n  high a p p r o h a t i o n ,  f o r  the  free H' accord- 
ing  t o  Hylleraas. 
use t h e  eigenfunctions of t he  two electrons bu t  only t h e i r  t o t a l  resu l tan t  
density dis t r ibut ion.  

namely p = 2 - cy3 e-2ar cy. 

placing both electrons i n  t h e  same state and seeking t h e  value CY t h a t  makes t h e  
t o t a l  energy a minimum. 
densi ty  d is t r ibu t ion  can be read from the i l l u s t r a t i o n  given by Bethe (loc.  
c i t . ) .  
ins ide  but fo r  t ha t  drops i n  a somewhat more shallow manner toward t h e  outside. 
Presumably, our value of p W i l l  be quite useful as an approximate c r i t e r ion  f o r  
t he  11atomic radius" of H'. 

/936 

I n  our subsequent perturbation calculus, we then no longer 

For t h e  lat ter,  we set up another simplified formula, 

Here, cy is  given a value of l l /16 ,  obtained by 
l-r 

The difference of this d is t r ibu t ion  from t h e  real 

The maximum of the  real density d is t r ibu t ion  i s  located somewhat f a r the r  

Now, the  calculation becomes quite simple. first, t h e  regular Coulomb in- 

1 
R t e rac t ion  a = - - of 

by t h e  known shielding 

t h e  H' electrons b = 2 

two monovalent ions a t  a distance R must be supplemented 

e f f ec t  due t o  t h e  f i n i t e  extent of t h e  charge cloud of 

(+ + cy)e-2uR . Secondly, this must be supplemented 

fur ther  by the  repulsion due t o  penetration of the H' charges in to  the  rumpf 
of K+: 

e-*r)dr-2e-2aR -Ax( 1 
x XQ- as 

* - -- -I 

e-- 
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Finally, the  known difference between ionization energy of t h e  K atom and elec- 
t ron  a f f i n i t y  of t he  H atom must be taken i n t o  consideration; this i s  d = 
= 4.32 - 0.72 = 3.60 V. 

Using a l l  four components, an equilibrium distance of 1.9 i (e-: 2.2 i) 
and a dissociat ion energy of 1.95 v ( e q :  2.06 v) are obtained. 
i s  ra ther  sa t i s fac tory  here; the  f ac t  tha t  t he  distance i s  somewhat too small 
might be a t t r ibu tab le  t o  the  excessively rapid drop of our p value a t  large 
distances Under application of Bethe's density dis t r ibut ion,  t he  atoms pre- 
sumably are forced somewhat apart ,  and the  resul tant  energy drop can be compen- 
sated again by the  polar izat ion forces which we had disregarded. 

The agreement 

/937 

The value of 1.95 v i s  composed of t he  following individual components: 
a = -1/R = - 7.52 v; 
shielding: b = +0.37 v; 
K+ rumpf (Pauli  pr inciple) :  c = +1.60 v; 
difference between ionization energg of K and electron affinity of H: 
d = +3.60 v. 

It i s  obvious tha t  t h e  llionic radius1! of K, produced by the  P a u l i  pr inciple ,  
plays a decisive ro le  here. T h i s  calculation, a t  least qual i ta t ively,  a l so  con- 
firms our concept tha t  t h e  coupling between the  motions of both electrons i s  of 
a major importance f o r  the  case of weak binding energies. 

8. Conclusions 

All above calculations are of a more o r  less orienting nature. However, 
according t o  the  r e su l t s  obtained it seems useful t o  construct more precise  
formulas f o r  solving t h e  problems and t o  carry out t h e  higher approdmations, 
which are somewhat more cumbersome from the  coqukakional viewpoir,t. It can be 
hoped t o  s e t t l e  act ivat ion questions with this method, without requiring an ex- 
cessive number of a rb i t ra ry  assumptions with respect t o  the  in te rac t ion  functions 
involved. 

Available empirical data c lear ly  indicate t h e  d i rec t ion  i n  which t h e  theory 
m u s t  proceed. 
and Will later be extended a l s o  t o  other atoms. 
described approximation Viewpoint t o  problems of po lar izabi l i ty  of atoms and 
ions.  

Calculations along this l i n e  have been s t a r t ed  at  our I n s t i t u t e  
We have i n  mind t o  apply the  

Summam: For an approximate treatment of the valence electrons of simple 
atoms, a modified Schr'cidinger equation i s  derived i n  which the t o t a l  influence 
of t h e  r q f  i s  taken i n t o  consideration by an auxi l iary po ten t i a l  and i n  which 
the  exclusion pr inc ip le  does not apply t o  the valence electrons.  Basing the  
auxiliary po ten t i a l  on t h e  Thomas-Fermi theory yields  correct orders of mag- 
nitudes, w h i l e  f o r  p rac t i ca l  application po ten t i a l  and eigenfunctions can be 
taken from the  spectra. 

/938 

Application t o  t h e  binding energy of Kz, 
Heitler-London perturbation method, furnishes 
Ejcactly this result i s  i n  excellent agreement 

i n  the  approximation of the  
only 37% of the  real energy. 
with data obtained by James during 



. 
8 

a consequent allowance f o r  r q f  effects  according t o  t h e  Heitler-London method. 
For t h e  case of KH, t h e  same approemation yielded 39% of the  real energy, a t  
$O% par t ic ipa t ion  of the  ionic  state. The main reason f o r  the  energy deficiency 
i s  the  f a c t  t h a t  the  coupling of the  o rb i t a l  motions of t he  electrons, due t o  
t h e i r  interact ion,  had been neglected. In t h e  l imit ing case of pure ion ic  bind- 
ing, this value can be taken from the  exact H o  theory, yiglding a binding energy 
of 1.95 v (e-: 2.06 v) at a distance of 1.9 A ( e q :  2.2 A ) .  
are being continued. 

The calculat ions 

9 Mathematical Amendix 

In  addition t o  the  elementary in tegra ls  which can be d i rec t ly  evaluated i n  
spherical  coordinates, two other  types occur which are carr ied out i n  e l l i p t i c  
coordinates. We are noting these well-known in t eg ra l s  here: 

e- ‘lr ;; - ‘‘6 
d t  = 

- 

ua - v* 
3 

To these, most in tegra ls  i n  which ra and r b  occur, can be reduced. For example, 
we have 

With $a and $b as exponential functions around t h e  nucleus a resp. b, this Will 
y ie ld  t h e  above-given types of integrals.  
one in tegra l :  

Di f f icu l t ies  are produced by only /939 

The literature contains series expansions f o r  this in t eg ra l  (Ref .U), but these 
are very cumbersome t o  handle especially i f ,  as i n  our case, the convergence i s  
poor. 
after t h e  first terms. For this reason, we p re fe r  an en t i re ly  d i f fe ren t  method 
which seems useful  f o r  an estimation. 

This leaves no other poss ib i l i ty  than t o  break off t he  series a r b i t r a r i l y  

We base the  process on t h e  assumption tha t ,  f o r  a la rge  domain of R and e ,  
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t he  r a t i o  of I t o  the  sums of the analogous integrals ,  i n  which - i s  replaced 
r12 

respectively by - , remains re la t ive ly  constant. To ver i fy  the  
by Tal rb 1 

jus t i f i ca t ion  of such an assumption, the r a t i o  i s  calculated according t o  
Sugiura i n  the  first column of Table 1, f o r  t he  l imit ing case c = 1. 
mate the  manner i n  which this r a t i o  varies with e, l e t  us consider t he  other 
l imit ing case c < 1 whose solution can a l so  be given. The in te ra tax ic  distance 
i s  assumed t o  be at least so  large that  t h e  nucleus of t h e  la rger  atom comes t o  
l i e  en t i r e ly  outside the  smaller atom. 
d i s t r ibu t ion  -'b obviously becomes e-ERe-rb since, i n  the  en t i r e  region i n  
which the  fac tor  e-'b d i f f e r s  noticeably from zero, t h e  other  fac tor  
be replaced by e-ER Integrat ion yields I = 2 0 & ~ e " ~ ~ ~  . 
assumptions, we obtain 

To esti- 

Under t h e  a s s u p t i o n  e < 1, the  charge 

can 
Under the  mentioned 

0.39 

6 ' ~  0.50 
IO 0.56 

T h i s  r a t i o  i s  5 R 
-B mo Consequently, t h e  sought r a t i o  7 )  w i l l  become 7 = 

shown i n  column 2 of Table 1. It i s  obvious that t h e  course with R i s  the  same 
as at  c = 1 and tha t  even the  absolute value f o r  average R does not d i f f e r  much 
from the  value at  e = 1. Finally, we interpolate  l i n e a r b  between e = 0 
and e = 1, by conclusively writ ing 

0.31 0.39 
0.38 0.44 
0.42 0.47 
0.45 0.49 
0.47 0.51 
0.52 0.55 

TABLE 1 

A s  e + 0 and a t  R 9 1, t h e  r e l a t i o n  becomes s t r i c t l y  valid;  f o r  c = 1, 
On applying column 3 of Table 1 shows t h a t  the a p p r o h a t i o n  i s  sat isfactory.  

this formula t o  intermediate values of e ,  t h e  e r ro r  most l i ke ly  will not be more 
than a f e w  percent. We used t h i s  estimate above f o r  R = 4. 
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